Counterexamples to Continuity of Optimal Transportation on Positively Curved Riemannian Manifolds

نویسنده

  • YOUNG-HEON KIM
چکیده

Counterexamples to continuity of optimal transportation on Riemannian manifolds with everywhere positive sectional curvature are provided. These examples show that the condition A3w of Ma, Trudinger, & Wang is not guaranteed by positivity of sectional curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of optimal transport maps on multiple products of spheres

This article addresses regularity of optimal transport maps for cost=“squared distance” on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away ...

متن کامل

Mass Transportation on Sub-Riemannian Manifolds

We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann’s Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal m...

متن کامل

Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds

In this paper we investigate the regularity of optimal transport maps for the squared distance cost on Riemannian manifolds. First of all, we provide some general necessary and sufficient conditions for a Riemannian manifold to satisfy the so-called Transport Continuity Property. Then, we show that on surfaces these conditions coincide. Finally, we give some regularity results on transport maps...

متن کامل

Continuity, Curvature, and the General Covariance of Optimal Transportation

Let M and M̄ be n-dimensional manifolds equipped with suitable Borel probability measures ρ and ρ̄. For subdomains M and M̄ of Rn, Ma, Trudinger & Wang gave sufficient conditions on a transportation cost c ∈ C4(M × M̄) to guarantee smoothness of the optimal map pushing ρ forward to ρ̄; the necessity of these conditions was deduced by Loeper. The present manuscript shows the form of these conditions ...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007